CLEANSPACE™ HEPA LOW PROFILE PARTICULATE FILTER

PRODUCT CODE: PAF-1103
PRODUCT NAME: CleanSpace™ Low Profile HEPA Particulate Filter

Description
CleanSpace Low Profile (HEPA) Particulate Filters are suitable for protection against airborne particulate (dust, mists and fumes). Filtration efficiency 99.97% for 0.3um particles or above.

IMPORTANT: When selecting a CleanSpace Filter consult a Health and Safety specialist for advice on the appropriate respiratory equipment and filter use.

Approvals Standards Classification
TC-21C-1065 PAPR-HEPA Particulate

Features
- Compatible with CleanSpace2 PAPR Power Units.
- CleanSpace HEPA Filter comes in a pack of 3 (Pk 3).
- Used with the revolutionary CleanSpace - A light weight PAPR with no hoses/belts.
- Suitable for protection against airborne particulate (dust, mists and fumes).
- Materials: Fibreglass particulate media and plastic casing.
- Easily fitted and removed from the Power Unit.

Specifications and materials
- Weight: average 32g.
- Packaged Shelf life: 3 years from manufacturing date.
- Materials: ABS frame, microfiber; PC spun fibres, EPDM foam (seal).
- Storage and Use: –10°C to +55°C (–4°F to +131°F) at <90% relative humidity.
 Store away from direct sunlight, grease and oil.
- Only to be used with CleanSpace PAPR power units.
- The filters are not waterproof and should be replaced if expose to water.

Suitable Applications
Mining, Welding, Manufacturing, Smelting, Construction, Recycling Plants, Emergency Services, Agriculture, Processing Plants, Grinding. For more details refer to Filter Selection Table on CleanSpace website: www.cleanspacetechnology.com

Training
Online training available with verification for compliance purposes.
Contact sales@cleanspacetechnology.com

Limitations
CleanSpace respirators are air filtering, fan assisted positive pressure masks and designed to be worn in environments where there is sufficient oxygen to breathe safely. Do not use the CleanSpace in IDLH atmospheres, to protect against gases/vapours that cannot be filtered, or in Oxygen enriched or deficient atmospheres.